Tetrathiorhenate(v_I), ReS₄²⁻. Spectroelectrochemical Characterization (UV–VIS–IR) of a Small New d¹ System and of its Tetrakis(2,2'-bipyridine)diruthenium(\parallel) Complex (EPR)

Roland Schäfer, # Wolfgang Kaim, * # Michael Moscherosch # and Michael Krejčik #

 ^a Institut für Anorganische Chemie der Universität, Pfaffenwaldring 55, W-7000 Stuttgart 80, Germany
^b J. Heyrovsky Institute of Physical Chemistry and Electrochemistry, Czechoslovak Academy of Sciences, Dolejškova, 3 CS-182 23 Prague, Czechoslovakia

 ReS_4^{2-} is the first d¹ tetrathiometallate persistent enough to be studied with respect to change transfer, ligand field and IR vibrational spectra *via* spectroelectrochemistry; an EPR spectrum could only be detected of its trinuclear derivative $[(bpy)_2\text{Ru}(\mu-\text{ReS}_4)\text{Ru}(bpy)_2]^{2+}$ (bpy = 2,2'-bipyridine) at 4 K.

The tetrathiometallates MS_4^{n-} with d⁰ configuration have been intensively studied¹ for a variety of reasons. These relatively simple pentaatomic species have low lying unoccupied d orbitals which are responsible for the conspicuous colours due to ligand-to-metal charge transfer (LMCT) transitions, $p(S) \rightarrow d(M)$. Furthermore, the negative charge and the presence of potentially bis-chelating sulfur atoms make these metal-containing anions useful as π accepting bridging ligands in the formation of homo- and heteropolynuclear systems, 1-6 the electronic structures of which have been related to heterometallic sulfide clusters such as the Fe-Mo or Fe-V centres of nitrogenases.³ With respect to this latter aspect, the groups of Müller⁴ and Holm⁵ have recently drawn attention to the particular behaviour of the ReS_4^- ion as compared to MoS_4^{2-} or WS_4^{2-} . For instance, the lower lying unoccupied orbitals of ReS4- are believed to be responsible for an apparent electron transfer reaction with FeCl₂ to yield $[Cl_2Fe(\mu-ReS_4)FeCl_2]^{2-}$, with formally hexavalent rhenium, as a stable product.4

While the facilitated reduction of a bridging π acceptor system after twofold metal coordination is common with inorganic⁶ and organic⁷ bis(chelate) ligands (*vide infra*), the reduction behaviour of the 'free', *e.g.* merely ion-paired, tetrathiometallates of Mo^{V1}, W^{V1} and Re^{V11} has not been extensively studied because of the negative potentials and the high nucleophilicity of the species thus generated.

We have now used the possibility of (spectro)electrochemistry in a specially designed cell⁸ using very dry solvents to study the reduction of the tetraethylammonium salts of MoS_4^{2-} , WS_4^{2-} and ReS_4^{-1} in dimethylformamide (DMF) or MeCN-0.1 mol dm⁻³ Bu₄NClO₄. In contrast to previous statements on MoS_4^{2-4b} or $WS_4^{2-,9}$ these ions can be reduced *reversibly* in very dry DMF at half-wave potentials of -2.94 and -3.16 V vs. ferrocene/ferrocenium (Fc/Fc⁺), respectively; unfortunately, the persistence of the trianions is not sufficient for detailed spectroscopic studies.

 ReS_4^- , on the other hand, is reduced in two reversible one-electron steps⁵ in acetonitrile at less negative half-wave potentials of -1.58 and -2.46 V vs. Fc/Fc⁺ which enabled us to study the Re^{V1} intermediate with its comproportionation constant of $K_c = 10^{\Delta E/59}$ mV = 10^{15} by optical and vibrational

Fig. 1 UV–VIS–near IR absorption spectra of ReS_4^{-1} (----) and ReS_4^{2-1} (----) from spectroelectrochemistry in acetonitrile–0.1 mol dm⁻³ Bu₄NClO₄

spectroelectrochemistry in the UV, visible, near-IR and IR regions (Figs. 1 and 2).

The two major LMCT bands¹ of purple ReS₄⁻ at 509 and 313 nm in acetonitrile exhibit shifts to 486 and 326 upon reduction to ReS₄²⁻ (Fig. 1). In addition to these intense bands (the small band at 589 nm is assigned to a triplet charge transfer transition typical for 5d systems¹⁰), there are now three weak ligand field (LF) bands in the long-wavelength region of that d¹ system at 1046, 950 and 874 nm (9560, 10 530 and 11 450 cm⁻¹), corresponding to 10 Dq = 10520 cm⁻¹ and a splitting of about 2 × 950 cm⁻¹ (Fig. 1). The number and approximate positions of these bands for ReS₄²⁻ corresponds closely to those of MnO₄²⁻ in various host crystals¹¹ (about 10 690, 11 030 and 11 370 cm⁻¹; 10 Dq = 11030 cm⁻¹, split by 2 × 340 cm⁻¹) which suggests an analogous assignment e \rightarrow t₂ where the levels are split¹² by (Jahn–Teller) distortion and spin–orbit coupling:¹¹ ξ (Re) $\gg \xi$ (Mn).

The IR vibrational spectrum measured in CD₃CN-0.1 mol dm⁻³ Bu₄NPF₆ shows that the typical v_{as} band of tetrathiometallates¹ shifts from 490 to 439 cm⁻¹ upon reduction to ReS₄²⁻ (Fig. 2). This confirms that the added electron is placed in a partly antibonding orbital³ and suggests a Re^{V1} formulation for [Cl₂Fe(μ -ReS₄)FeCl₂]²⁻ (v_{as} = 446 cm⁻¹);⁴ for the size- and charge-related WS₄²⁻ v_{as} is 455 cm⁻¹ in Me₂SO.^{1b}

While EPR studies of the electrogenerated ReS42- did not show a distinct signal at 4 K in frozen acetonitrile solution, perhaps owing to very short relaxation times, the less symmetrical trinuclear ion [(bpy)₂Ru(µ-ReS₄)Ru(bpy)₂]³⁺ (bpy = 2,2'-bipyridine), obtained in analogy to Mo and W complexes,⁶ has a small frontier orbital gap (Ru^{II} \rightarrow Re^{VII} transitions at 826 and 713 nm) and is reduced at a much less negative potential (-0.73 V vs. Fc/Fc⁺ in acetonitrile) to a paramagnetic Re^{v_1} species which gave a detectable EPR signal at 4 K. The values of $g_x = 1.73$, $A_x(\text{Re}) = 49 \text{ mT}$, $g_y =$ $1.78, A_y(\text{Re}) = 39.0 \text{ mT}; g_z = 2.08 \text{ and } A_z(\text{Re}) < 6 \text{ mT reflect}$ the high spin-orbit coupling constant and the nuclear magnetic properties of rhenium ($\xi > 2000 \text{ cm}^{-1}$; ^{185,187}Re: I =5/2). The results may be compared to those of a 'true' Re^{v_1} species, viz., tetragonally distorted ReO_4^{2-} in CaWO_4 ($g_{\perp} =$ 1.7164, $A_{\perp}(\text{Re}) = 0.0324 \text{ cm}^{-1} = 40.4 \text{ mT}, g_{\parallel} = 1.8549. A_{\parallel} =$

Fig. 2 IR vibrational spectra of $\text{ReS}_{4^{-}}$ (\downarrow) and $\text{ReS}_{4^{2^{-}}}$ (\uparrow) from spectroelectrochemistry in CD₃CN-0.1 mol dm⁻³ Bu₄NPF₆

 $0.0042 \text{ cm}^- = 4.85 \text{ mT}$;¹² the $g_z > 2$ component of the trinuclear tetrathiorhenate(vi) complex indicates contributions from the ligand-based t₁ orbitals,¹³ *i.e.* considerable metal–ligand orbital mixing as was recently reported also for RuO₄^{-,13}

The striking correspondence in spectral data for MnO_4^{2-} and ReS_4^{2-} and the EPR results suggest a high degree of covalency of the metal–chalcogen bond, reducing the effective oxidation state of the metal. In fact, Müller and coworkers have deduced from XPS and XANES studies^{4b} that such a delocalization should be quite strong for the ReS_4^{n-} system, preventing it from being useful within artificial nitrogenase enzymes.

Support from DFG (Schwerpunktprogramm and Exchange Program with ČSAV) is gratefully acknowledged.

Received, 28th February 1992; Com. 2/01071B

References

 (a) A. Müller, E. Diemann, R. Jostes and H. Bögge, Angew. Chem., 1981, 93, 957; Angew. Chem., Int. Ed. Engl., 1981, 20, 934; (b) K. H. Schmidt and A. Müller, Coord. Chem. Rev., 1974, 14, 115.

- 2 A. Müller, E. Krickemeyer, A. Hildebrand, H. Bögge, K. Schneider and M. Lemke, *J. Chem. Soc.*, *Chem. Commun.*, 1991, 1685.
- 3 A. Müller, R. Jostes, E. Krickemeyer and H. Bögge, Naturwissenschaften, 1987, 74, 388.
- 4 (a) A. Müller, E. Krickemeyer, F.-W. Baumann, R. Jostes and H. Bögge, *Chimia*, 1986, **40**, 310; (b) A. Müller, E. Krickemeyer, V. Wittneben, H. Bögge and M. Lemke, *Angew. Chem.*, 1991, **103**, 1501; *Angew. Chem.*, *Int. Ed. Engl.*, 1991, **30**, 1512.
- 5 S. Ciurli, M. J. Carney, R. H. Holm and G. C. Papaefthymiou, Inorg. Chem., 1989, 28, 2696.
- 6 M. A. Greaney, C. L. Coyle, M. A. Harmer, A. Jordan and E. I. Stiefel, *Inorg. Chem.*, 1989, **28**, 912.
- 7 S. D. Ernst and W. Kaim, Inorg. Chem., 1989, 28, 1520.
- 8 M. Krejčik, M. Danek and F. Hartl, *J. Electroanal. Chem.*, 1991, **317**, 179.
- 9 D. E. Pratt, S. H. Laurie and R. H. Dahm, *Inorg. Chim. Acta*, 1987, **135**, L21.
- 10 E. M. Kober and T. J. Meyer, Inorg. Chem., 1982, 21, 3967.
- 11 P. Day, L. DiSipio, G. Ingletto and L. Oleari, J. Chem. Soc., Dalton Trans., 1973, 2595.
- 12 P. McGeehin, B. Henderson and P. C. Benson, *Proc. R. Soc. London A.*, 1975, **346**, 497.
- 13 A. C. Dengel, J. F. Gibson and W. P. Griffith, J. Chem. Soc., Dalton Trans., 1991, 2799.